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1. Introduction
The purpose of this document is to inform 
the user about Deswik Pseudoflow, within the 
context of the mining industry’s most accepted 
pit optimization process that uses Whittle 
software based on the Lerchs-Grossman (LG) 
algorithm.  

In summary, both are variations of network flow algorithms 
that achieve the same result, with the pseudoflow algorithm 
being a computationally more efficient algorithm developed 
some 35 years after the original Lerchs-Grossman algorithm 
(1965).

It took 20 years from the formulation of the LG algorithm 
for it to be incorporated in the first commercially available 
software (Whittle Three-D), with another 10 years before it 
became a mainstream approach to open pit optimization. 

In the past 30 years, Whittle and the LG algorithm have 
become synonymous with the optimization of open pits, 
and now suffers from having become a generic term for the 
process of pit optimization– similar to the genericization of 
the Hoover brand with vacuuming in the UK (such that in the 
UK, people hoover their carpets).  

It is now 15 years since the formulation of the pseudoflow 
algorithm, and there are at least three commercial 
implementations available, including Deswik’s implementation. 

Just as “hoovering” does not need to be a Hoover vacuum 
cleaner – indeed the Dyson cyclonic vacuum is recognized as 
far more efficient at vacuuming– the pseudoflow algorithm 
should now be used to replace the LG algorithm in “whittling” 
your pit optimization.

It should be noted that the Deswik implementation is 
not constrained (nor is it aided) by the extensive set-up 
parameter tables and inputs provided in the Whittle software 
for cost and revenue calculations. For Deswik’s pseudoflow 
implementation, the user is required to calculate the revenues 
and costs for each block in the block model used, and is 
required to do their own block regularization within the 
Deswik.CAD environment. The user is thus in full control of 
how the costs and revenues are calculated and assigned. This 
does however require the user to be fully familiar with their 
block model, cost structures and revenue parameters (which 
we believe is a “good thing”). This enables the set-up to be 
as flexible as required by the user (unconstrained by template 
set-up dialogs).



      Pseudoflow Explained   |   Julian Poniewierski   |   3

2.1. MANUAL PROCESS

Prior to the development of computerized methods of pit 
optimization and pit design, mining engineers used manual 
interpretation methods with evaluation on manually drawn 
cross-sections (on paper, linens, or film), and then a manual 
pit design.

In the manual method, a simple optimization of economic 
pit depth was usually carried out by hand calculator (or slide 
rule) for regular shaped orebodies using incremental cross-
sectional areas, for ore and waste, and an overall pit slope. 
The incremental stripping ratio (the ratio of the tonnage 
of waste that must be moved to access the next mass 
increment of ore that will be accessed) on each cross-section 
was compared against the break-even stripping ratio for the 
estimated ore grade and appropriate revenue and cost inputs.  

The final pit shell was then produced by drawing increasingly 
larger pit shells on cross section such that the last increment 
had a strip ratio equal to the design maximum. 

This was a very labor intensive approach and could only ever 
approximate the optimal pit. The design had to be done on 
a large number of cross sections and was still inaccurate 
because it treated the problem in only two dimensions. 
In cases of highly variable grade the problem became 
extremely complex, and relied heavily on the “gut feel” of an 
experienced designer using trial and error.

2.2. FLOATING CONE

Pana (1965) introduced an algorithm called Moving (or 
Floating) Cone. The method was developed at Kennecott 
Copper Corporation during the early 1960s (McCarthy, 1993) 
and was the first computerized attempt at pit optimization, 
requiring a three dimensional computerized block model of 
the mineral deposit.

The projected ultimate pit limits are developed by using a 
technique of a moving “cone” (or rather a frustum of an 
inverted cone – that is, the “pointy” end has been cut to a 
minimum mining area). The cone is moved around in the block 
model space to generate a series of interlocking frustum 
shaped removal increments.

However, the shortcoming of this approach is that it creates 
overlapping cones, and it is incapable of examining all 
combinations of adjacent blocks. 

For this reason, the algorithm fails to consistently give realistic 
results.

Mintec/MineSight (being a US based company and supplier 
of early solution to Kennecott) were an early implementer 
of the floating cone algorithm (and may still offer it in their 
solution suite).

2.3. LERCHS - GROSSMAN

It was also in 1965 that Lerchs and Grossmann published a 
paper that introduced two modeling approaches to solving 
the open pit optimization problem. The Lerchs-Grossman 
(LG) algorithm is well documented in the technical literature 
(Lerchs and Grossman, 1965; Zhao and Kim 1992; Seymour, 
1995; Hustrulid and Kuchta 2006).

The LG method was based on a mathematical technique 
which was unusable in practice until a practical optimization 
program called Whittle Three-D was developed by Jeff 
Whittle of Whittle Programming Pty Ltd in the mid-1980s.

Two methods to the solution of open pit optimization were 
detailed by Lerchs and Grossmann, being a Graph Theory 
algorithm, which is a heuristic approach, and a Dynamic 
Programming algorithm, which is an application of an 
operations research technique. Both methods gave an 
optimum pit limit for an undiscounted cash flow – based on 
an economic block model of an ore body and its surrounding 
waste, and determined which blocks should be mined to 
obtain the maximum dollar value from the pit.

The LG methods took into account two types of information:

1. The required mining slopes. For each block in the model, 
the LG method needs details of what other blocks must be 
removed to uncover it. This information is stored as “arcs” 
between the blocks (“nodes”).

2. The value in dollars of each block once it has been 
uncovered. In the case of a waste block this will be 
negative and will be the cost of blasting, digging and 
haulage. In the case of an ore block, the removal cost 
will be offset by the value of the recovered ore, less any 
processing, sales, and other associated costs. Any block 
which can, during mining, be separated into waste and ore 
is given a value which reflects this.

Given the block values (positives and negatives) and the 
structure arcs, the LG method progressively builds up a list 
of related blocks in the form of branches of a tree (called a 
“graph” in mathematics). Branches are flagged as ‘strong’ if 
the total of their block values is positive. Such branches are 
worth mining if they are uncovered. Other branches with 
negative total values are flagged as ‘weak’.

The LG method then searches for structure arcs, which 
indicate that some part of a strong branch lies below a weak 
branch. When such a case is found, the two branches are 
restructured so as to remove the conflict. This may involve 
combining the two branches into one (which may be strong 
or weak) or breaking a ‘twig’ off one branch and adding it to 
the other branch.

2. History of pit optimization
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The checking continues until there is no structure arc which 
goes from a strong branch to a weak branch. At this point the 
blocks in all the strong branches taken together constitute 
and define the optimum pit. The blocks in the weak branches 
are those which will be left behind when mining is complete.

In effect, what the LG algorithm has done is to find the 
maximum closure of a weighted directed graph; in this case 
the vertices represent the blocks in the model, the weights 
represent the net profit of the block, and the arcs represent 
the mining (usually slope) constraints. As such the LG 
algorithm provides a mathematically optimum solution to the 
problem of maximizing the pit value (importantly, note that 
this is for an undiscounted cash flow value).

It should be noted that it is a mathematical solution. Except 
for the information given by the arcs, the LG algorithm 
“knows” nothing about the positions of the blocks – nor 
indeed about mining. The LG algorithm works only with a list 
of vertices and a list of arcs. Whether these are laid out in 
one, two or three dimensions and how many arcs per block 
are used is immaterial to the logic of the method, which is 
purely mathematical.

Also note that it took some 20 years between the publication 
of the LG method (1965, which was also the year that the 
floating cone method was computerized) and the first 
commercial available adoption of the LG method (Whittle’s 
Three-D).

The basic LG algorithm has now been used for over 30 years 
on many feasibility studies and for many producing mines.

2.4. NETWORK FLOW SOLUTIONS

“In their 1965 paper, Lerchs and Grossmann indicated that 
the ultimate-pit problem could be expressed as a maximum 
closure network flow problem but recommended their direct 
approach, possibly due to computer memory constraints at 
the time. The LG algorithm was therefore a method of solving 
a special case of a network flow problem” (Deutsch, et al, 
2015).

In 1976, Picard “provided a mathematical proof that a 
“maximum closure” network flow problem (of which the 
open cut optimization problem is one) were reducible to a 
“minimum cut” network flow problem, hence solvable by 

any efficient maximum flow algorithm. As a consequence, 
sophisticated network flow algorithms could therefore be 
used in place of the LG algorithm, and they can calculate 
identical results in a fraction of the time.” (Deutsch, et al, 
2015).

One of the first efficient maximum flow algorithms used in 
solving the open pit optimization problem was the “push-
relabel” algorithm (Goldberg and Tarjan, 1988; King et al., 
1992; Goldfarb and Chen, 1997). 

“Hochbaum and Chen’s study (2000) showed that the push-
relabel algorithm outperformed the LG algorithm in nearly all 
cases. When the number of vertices is large, greater than a 
million, network flow algorithms perform orders of magnitude 
faster and compute precisely the same results.” (Deutsch, et 
al, 2015).

Numerous authors implemented the push-relabel algorithm, 
and various heuristics and techniques were developed to 
maximize its performance. This was the algorithm that 
MineMax implemented in their first pit optimizer software 
offering.

Development of more efficient network flow algorithms have 
continued.  The generally accepted most efficient algorithm 
currently available are the various pseudoflow algorithms 
developed by Professor Dorit Hochbaumn and her colleagues 
at University of California, Berkeley (Hochbaum, 2002, 2001; 
Hochbaum and Chen, 2000).

Pseudoflow methods give new life to the LG pit optimization. 
The “highest label” method implementation of the pseudoflow 
algorithm in particular is consistently faster than the generic 
LG methods and is also usually faster than the alternative 
“lowest label” method implementation of the pseudoflow 
algorithm. The increase in speed can be from two to 50 times 
faster than the LG methods, and theoretically much faster for 
larger problems (Muir, 2005).
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Muir (2005) gave the most comprehensive analysis of the 
pseudoflow algorithm performance and a practical example 
of the identical results achieved in comparison to the LG 
algorithm in solving a pit optimization. These analyses and 
results were presented to the mainstream mining industry 
in the 2005 AusIMM Spectrum series publication: Orebody 
Modelling and Strategic Mine Planning. Key results of Muir’s 
analysis are reproduced herein.

It should be noted that the code written by Muir (2005) is 
the underlying calculation engine that has been implemented 
in Deswik Pseudoflow.

As a check of the correct implementation of that code, the 
results for the Deswik implementation were compared against 
four publicly available test data sets from Minelib1 (Espinoza 
et al, 2012).  The specific data sets the results were checked 
against were for Marvin, McLaughlin, KD and P4HD. The 
Pseudoflow results were identical to the published results at 
Minelib.

Table 1 (from Muir, 2005) shows the relative run-times for 
several variants of both the LG and pseudoflow algorithms. 
It can be seen from these results that the “highest label 
pseudoflow priority queue” (HLPQ) implementation took just 
under 2% of the time it took for the standard LG algorithm to 
solve a 38 bench pit optimization problem.

Table 2 (from Muir, 2005) shows that the number of blocks 
and the profit value for the HLPQ solution was identical 
to the LG solution of the same 38 bench pit optimization 
problem.

The relative solution times shown in Table 1 are shown plotted 
in Figure 1.

In addition to Muir’s paper, there are a couple of other 
known examples of published comparisons between the LG 
algorithm and flow network solutions to the pit optimization 
problem.

Jiang (2015) stated that the final pit limits from using a 
pseudoflow algorithm implementation versus the Whittle LG 
implementation have always been found to be materially the 
same, with any minor differences that are observed always 
being due to how the various implementations compute the 
slope angle constraints.

The push-relabel algorithm implemented by MineMax was 
compared to the LG algorithm by SRK (Kentwell, 2002) 
and was found to produce “the same results for the actual 
optimal pit calculations” (to within less than 0.01% - with 
the differences appearing to be due to block coarseness and 
slopes).

1 http://mansci-web.uai.cl/minelib/Datasets.xhtml

BENCH LG LGS LLP LLPS LLPQ HLPQ

26 285 56 186 91 23 9

28 398 94 247 107 35 13

30 632 130 327 125 54 17

32 878 176 410 145 83 28

34 1157 243 480 152 107 27

36 1387 478 541 157 116 28

38 1527 628 556 160 126 29

LG Normal Lerchs-Grossmann

LGS Subset Lerchs-Grossmann

LLP Lowest Label Pseudoflow (no priority queue)

LLPS Subset Lowest Label Pseudoflow (no priority queue)

LLPQ Lowest Label Pseudoflow (priority queue)

HLPQ Highest Label Pseudoflow (priority queue)

 (after Muir, 2005)

Figure 1 – Solution times for four pit optimization algorithms for different bench 
number pit problems

Table 1 – Optimization times (seconds) to various pit levels for 
220 x 119 x 38 profit matrix

Table 2 – Statistics for level 38 for 220 x 119 x 38 profit matrix

3. Algorithm performance comparisons

LG LLPQ HLPQ

Profit value 57 118 058 57 118 058 57 118 058

Blocks removed 95 228 95 228 95 228

Blocks remaining 830 754 830 754 830 754

Branches relinked 950 175 329 599 420 244

Branches pruned 1 703 036 459 454 638 088

Time (seconds) 1527 126 29
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Having shown that it has been proved that the pseudoflow 
algorithm will give identical results to the LG algorithm, it is 
appropriate to also point out that no algorithmic solution will 
provide the exact “true” optimization solution. There are a 
large number of approximations inbuilt into the algorithmic 
solution to the pit optimization problem as well as a number 
of common errors and uncertain assumptions used in the 
process.

The huge efforts dedicated to the development of 
sophisticated optimization algorithms is usually not matched 
by similar attention being paid to improving the correctness 
and reliability of the data used in the modeling exercise, as 
well as the correct use of the results of the modeling.

Some of the numerous sources of error, uncertainty and 
approximations in the process of pit optimization that need to 
be recognized are discussed below.

In summary, be aware that the process of pit optimization is 
based on coarse and uncertain estimated input parameters. 
Deswik therefore recommend that the user concentrate 
on the overall picture and getting as accurate as possible 
estimates of the “big ticket” items. And remember: “don’t 
sweat the small stuff”.

Deswik also advise to design for risk minimization of the 
downside in your assumptions, as per the scenario strategies 
advocated by Hall (2014) and Whittle (2009), but to also 
check the optimistic case upside scenario to determine 
infrastructure boundaries.

4.1. SOLUTION APPROXIMATION “ERRORS”

a. The effect of using blocks with vertical sides to represent 
a solution (a pit design) that has non-vertical sides.  It is 
possible to output a smoothed shell through the block 
centroids, but note that this will not give the same tonnes 
and grade result as the block based optimization when the 
surface is cut against the resource model blocks.

b. Slope accuracy representation. The accuracy of the overall 
slope created in the modeling process with respect to 
slope desired to be modeled will depend upon the height 
and number of dependencies (arcs) used to define the 
slope. This will always need to be checked for suitability. 
Larger blocks will generally give less slope accuracy, and 
more, smaller blocks that allow greater accuracy will require 
more modeled arcs (block precedencies) and will slow 
the processing down. An accuracy tolerance of around 1° 
average error is usually considered acceptable.

c. Changes in converting a shell to a pit design.  A difference 
of 5% in tonnes is quite common during this process. 
This is due to the approximation of the overall slope with 
respect to the actual design and effects of placement of 
haul roads on that overall slope.

d. Effect of minimum mining width on the bottom of a 
shell.  Many pit optimizations are undertaken without 
consideration of the minimum mining width at the bottom 
of each shell – even when the package used provides 
such a facility. This will change the value of the selected 
shell used for design. At present Deswik’s implementation 
of Pseudoflow does not have a tool to consider minimum 
mining width – but this is in the future development plans. 

e. Effect of stockpiling. The pit optimization algorithms – 
both Whittle LG and Deswik Pseudoflow assume the value 
generated is the value that occurs at time of mining, and 
stockpiling delays the recovery of that value. Stockpiling 
for 10 or more years will mean that the time value of the 
block of ore stockpiled can be a fraction of the value used 
in the pit optimization. Mines with significant amounts of 
marginal stockpiled ore will suffer a significant oversize 
effect from the difference in when the algorithm values the 
block and when the value is actually generated.

f. If an elevated cut-off grade policy is used in the scheduling 
of the pit early in the pit’s life, as a means of maximizing 
the NPV (Lane, 1988), then the tonnage stockpiled will 
be increased, and the time related differences in value 
between when the pit optimization assigns the value and 
when the value is actually realized in the plan increases 
further. 

4.2. COMMON INPUT/OUTPUT ERRORS AND 
ISSUES

a. Errors in block model regularization and the assumed 
Smallest Mining Unit (SMU). If a block model is used 
that features grade estimated blocks at smaller than the 
SMU size, then unrealistic mining selectivity will be built 
into the result. If a model is regularized to a larger than 
SMU size for purposes of processing speed, then the ore/
waste tonnage classifications and grades at the SMU size 
need to be maintained and not smoothed out to the larger 
regularized block size. Not considering the over-selectivity 
can easily result in pits with an expectation of double 
the value of a pit selected from a block model with an 
appropriately sized SMU.

b. Using Revenue Factor (RF) =1 shells for final pit design. 
The pit limits that maximize the undiscounted cashflow for 
a given project will not maximize the NPV of the project.  
 
As discussed by Whittle (2009) when the time value of 
money is taken into account, the outer shells of the RF = 
1 pit can be shown to reduce value, due to the fact that 
the cost of waste stripping precedes the margins derived 
from ore ultimately obtained. The effect of discounted 
cash flow means the discounted costs outweigh the 
more heavily discounted revenues. The optimal pit from 
a Net Present Value (NPV) viewpoint can be between 
revenue factor 0.65 and 0.95, depending on the deposit’s 
structure and the mining constraints (minimum mining 
width, maximum vertical advancement per year, and limit 

4.  Modeling issues to note
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on total movement) and processing capacity. This can be 
seen where the peak of the discounted cash flow of the 
specified case is at a lower overall tonnage than the peak 
of the undiscounted total cash curve. 
 
Despite the fact that this aspect is well discussed in 
the technical literature, the selection of RF=1 shell is still 
commonly seen in the industry for ore reserves work and 
project feasibility studies.  
 
Additionally, the curve of discounted cash value versus 
tonnage tends to be flat at the top. For example, it is 
common for the last third of the life-of-mine to be quite 
marginal. Whilst it is worth maintaining the option to 
operate during this period and in this part of the deposit 
in case prices, costs, or technology improve, this part of 
the resource should not be regarded as a core part of and 
driver of a project (Whittle 2009).

c. Processing Plant Performance Parameters. Aside from 
price, the other big factor with significant uncertainty and 
used in the calculation of revenue received for a block of 
ore is the processing plant recovery. Variations in recovery 
for grade, mineralogy and hardness can be expected 
compared to the recovery used in the model. The 
commonly used constant recovery will almost always be 
wrong (either because it is optimistically over-estimated, or 
because there is a fixed tail component not be taken into 
account). 
 
Additionally, it should also be noted that project value can 
often be increased by sacrificing metal recovery to pursue 
lower cost, higher throughput – as discussed by Wooller 
(1999).

d. Cut-Off Grade. If blocks with extremely small values (cents 
per tonne of positive value) are left within the block model 
used (effectively the use of a marginal cut-off grade value 
of zero), then a lot of ore will be processed in the project 
for very little value. Effectively, a significant percentage of 
the ore is being mined and processed for little more than 
practice – as discussed in Poniewierski (2016). 
 
Deswik suggest that in order to avoid this situation that a 
value cut-off greater than zero be applied. It is suggested 
that a suitable value would be the minimum desired 
percentage margin on the processing and sales costs 
employed. Such blocks would have their revenue value set 
to zero, so they do not influence the optimal shell selection. 
Once the final shell has been selected and the ultimate 
pit designed, the marginal material in that pit can be 
reconsidered for inclusion in ore reserves and stockpiling if 
so desired. 
 
It should also be noted that for NPV maximization, a 
variable cut-off grade or cut-off value policy should be 
adopted (as per Lane 1988).

4.3. INPUT UNCERTAINTIES

a. Geological uncertainty. This is one of the biggest sources 
of error in a pit optimization, as the pit optimization results 
ultimately depend on the accuracy of the model and the 
competence of the geologist interpreting all the available 
geological data. The block model has been created from 
sparse imperfect data that makes assumptions and 
estimations on mineralization limits, mineralization grades 
modeling, fault interpretation and lithology interpretation. 
 
In the author’s experience, many resource models have 
contained metal errors of at least 10% or more (model 
over-call) and up to 30% has been seen. Cases of under-
call do also occur, and will predominate in the literature as 
no-one likes to discuss the bad outcomes publically. In the 
authors experience 70 to 80% of all resource models suffer 
from overcall to some degree. 
 
In addition to the grade uncertainty, there is also density 
uncertainty and in-situ moisture uncertainty. 

b. Effect of Inferred resources. Should these be included or 
not included?  If included, these can easily be in error by 
50% or more. If not included, the design will change when 
these are converted to Indicated or Measured status.

c. Geotechnical uncertainty. While a lot of focus can be 
spent on ensuring the desired overall angles are modeled 
accurately, in many cases the slopes provided for use may 
be little more than a geotechnical engineer’s guesstimate 
based on very little rock mass quality data, sparse and 
imperfect knowledge of faulting, jointing, bedding and 
hydrology. Even in operating pits, the geotechnical 
conditions can change quickly from that currently being 
used.

d. Dilution and loss are nearly always “guesses” – except for 
sites with a number of years of operating experience and 
a good reconciliation system that allows for assessment of 
the dilution and loss (which is not all that common).

e. Economic uncertainty. This is also one of the major sources 
of “error” with pit optimization. In the analysis of costs 
and revenues, we have to make assumptions about the 
macro-economic environment such as commodity prices, 
exchange rates, interest rates, inflation, fuel and power 
costs, sustaining capital costs, contractor costs and labor 
costs. For the commodity price in particular, we can 
confidently state that the price used will be 100% wrong 
for the life-of-the mine (it will never be one static value).

f. Costs. Except for operating mines with a good 
understanding of their detailed cost driver history, there is 
usually a great deal of uncertainty on the costs being used 
in the pit optimization. Many parameters used to estimate 
costs such as equipment selection, annual production rate, 
plant capacity and requirements, etc. are just estimates. 
There is usually an imperfect understanding of fixed and 
variable costs that do not truly reflect the changes in costs 
as the pits being assessed change in size.

g. In addition, it needs to be noted that fixed costs (or time 
period costs) need to be applied on the basis of the mine/
mill system bottle-neck. As a general rule this is often the 
SAG mill (with power rather than tonnage being the limit).
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Both the Lerchs-Grossmann and pseudoflow 
algorithms are variations of network flow 
algorithms that achieve the same result. 
Pseudoflow is however a computationally more 
efficient algorithm developed some 35 years 
after the original Lerchs-Grossman algorithm 
(1965), and has been available for use for some 
15 years, with the first implementation for mining 
discussed in 2005 (Muir, 2005).

If differences are seen between a Whittle LG result and a 

Deswik Pseudoflow result, it will be a difference in the set-up 

used. There are numerous set-up factors and parameters that 

can cause differences in pit optimization results, and the user 

should be aware of all of these to avoid falling into common 

error traps.

It should be noted that the Deswik implementation is not 

constrained (nor is it aided) by the pre-defined template 

inputs provided in the Whittle software for cost and revenue 

calculations (these templates can be restrictive for both very 

simple set-ups or complex set-ups not catered for). 

For Deswik’s Pseudoflow implementation, the user is required 

to calculate the revenues and costs for each block in the 

block model used, and is required to do their own block 

regularization within the Deswik.CAD environment. 

The user is thus in full control of how the costs and revenues 

are calculated and assigned, but this does require the user to 

be fully familiar with their block model, cost structures and 

revenue parameters (which we believe is a “good thing”). This 

enables the cost and revenue calculations to be as simple or 

complex as required by the user (unconstrained by template 

set-up dialogs).

5.  Summary
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